

DMH 311 H-NBR 90 schwarz

Mechanische, physikalische und thermische Eigenschaften

Hydrierter Acryl-Nitrile-Butadiene Kautschuk

EIGENSCHAFTEN	BEDINGUNG	NORM	EINHEIT		EINHEIT	
Farbe				schwarz		schwarz
Härte	23°C/3 sek.	ISO 868	Shore A	90 ± 5	Shore A	90 ± 5
Härte	23°C/15 sek.	ISO 868	Shore A	88 ± 5	Shore A	88 ± 5
Spannung bei 100%	23°C	DIN 53 504	MPa	≥ 6	psi	≥ 870
Reißfestigkeit	23°C	DIN 53 504	MPa	≥ 9	psi	≥ 1305
Reißdehnung	23°C	DIN 53 504	%	≥ 170	%	≥ 170
Weiterreißwiderstand	23°C	DIN ISO 34-1	kN/m	≥ 14	lbf/inch	≥ 80
Spezifisches Gewicht	23°C	ISO 1183	kg/m³	≥ 1480	g/cm ³	≥ 1,48
Rückprallelastizität	23°C	DIN 53 512	%	30	%	30
Abrieb	23°C	DIN 53 516	mm ³	130	mm³	130
Druckverformungsrest	*	ISO 815	%	≤ 26	%	≤ 26
Druckverformungsrest	**	ISO 815	%	≤ 32	%	≤ 32
Druckverformungsrest	***	ISO 815	%		%	
Untere Anwendungstemperatur			°C	-20	°F	-4
Obere Anwendungstemperatur			°C	150	°F	302
Obere Anwendungstemperatur bei Wasserdampf			°C	120	°F	248
Obere Anwendungstemperatur bei Heißluft, kurzfristig			°C	180	°F	356

^{* 24}h 70°C 25% def. ** 24h 100°C 25% def. *** 24h 150°C 25% def.

Chemische Eigenschaften

Copolymer basierend auf Butadien und Acrylnitril Beständig gegenüber Öl, Benzin, Rohöl Nicht beständig gegenüber konz. Säuren und konz. Laugen, polaren Lösungsmitteln

Lebensmittelzulassung	FDA - konform Maximal empfohlene Einsatztemperatur (FDA Anwendungen): 90°C
revision: 05-2024	

 $Detaillierte\ Informationen\ \ddot{u}ber\ Best\"{a}ndigkeiten\ in\ verschiedenen\ Chemikalien\ siehe\ DMH\ Chemical\ Resistance\ Guidente beständigkeiten\ in\ verschiedenen\ Chemikalien\ siehe\ DMH\ Chemical\ Resistance\ Guidente beständigkeiten\ in\ verschiedenen\ Chemikalien\ siehe\ DMH\ Chemical\ Resistance\ Guidente\ Guiden$

DMH Dichtungs- und Maschinenhandel GmbH

Industriepark West 11 8772 Traboch Austria

p. +43 (0)3833/200 60-0

f. +43 (0)3833/200 60-500

e. office@dmh.at

